MenACWY-TT (MenQuadfi): Evidence to Recommendations Framework (EtR), Grading of Recommendations, Assessment, Development, and Evaluation (GRADE), and Workgroup Considerations Lucy McNamara, PhD, MS Advisory Committee on Immunization Practices June 24, 2020 #### **Outline** - Overview of MenACWY vaccines and recommendations - Policy question - Evidence to Recommendations framework - Problem - Benefits and Harms - Including GRADE - Values, acceptability, feasibility - Resource use - Work group considerations | Vaccine product | Manufacturer | Trade name | Licensed for ages | Year licensed | |-----------------|-----------------|------------|-------------------|---------------| | MenACWY-D | Sanofi Pasteur | Menactra | 9 mos–55 yrs | 2005 | | MenACWY-CRM | GlaxoSmithKline | Menveo | 2 mos-55 yrs | 2010 | | MenACWY-TT^ | Sanofi Pasteur | MenQuadfi | ≥2 yrs | 2020 | | MPSV4* | Sanofi Pasteur | Menomune | ≥2 yrs | 2014 | | MCV4-TT** | Pfizer | Nimenrix | NA | NA | MenACWY-D=Meningococcal groups A, C, W, and Y polysaccharide diphtheria toxoid conjugate vaccine MenACWY-CRM=Meningococcal groups A, C, W, and Y oligosaccharide diphtheria CRM197 conjugate vaccine MenACWY-TT=Meningococcal groups A, C, W, Y polysaccharide tetanus toxoid conjugate vaccine (^Contains 10μg each of serogroup A, C, W, and Y polysaccharides conjugated to 55μg tetanus toxoid carrier protein) MPSV4=meningococcal polysaccharide vaccine, Groups A, C, Y and W combined ^{*}No longer available in the United States ^{**}Never licensed in the United States, contains 5µg each of serogroup A, C, W, and Y polysaccharides conjugated to 44µg tetanus toxoid carrier protein | Vaccine product | Manufacturer | Trade name | Licensed for ages | Year licensed | |-----------------|-----------------|------------|-------------------|---------------| | MenACWY-D | Sanofi Pasteur | Menactra | 9 mos-55 yrs | 2005 | | MenACWY-CRM | GlaxoSmithKline | Menveo | 2 mos-55 yrs | 2010 | | MenACWY-TT^ | Sanofi Pasteur | MenQuadfi | ≥2 yrs | 2020 | | MPSV4* | Sanofi Pasteur | Menomune | ≥2 yrs | 2014 | | MCV4-TT** | Pfizer | Nimenrix | NA | NA | MenACWY-D=Meningococcal groups A, C, W, and Y polysaccharide diphtheria toxoid conjugate vaccine MenACWY-CRM=Meningococcal groups A, C, W, and Y oligosaccharide diphtheria CRM197 conjugate vaccine MenACWY-TT=Meningococcal groups A, C, W, Y polysaccharide tetanus toxoid conjugate vaccine (^Contains 10μg each of serogroup A, C, W, and Y polysaccharides conjugated to 55μg tetanus toxoid carrier protein) MPSV4=meningococcal polysaccharide vaccine, Groups A, C, Y and W combined ^{*}No longer available in the United States ^{**}Never licensed in the United States, contains 5µg each of serogroup A, C, W, and Y polysaccharides conjugated to 44µg tetanus toxoid carrier protein | Vaccine product | Manufacturer | Trade name | Licensed for ages | Year licensed | |-----------------|-----------------|------------|-------------------|---------------| | MenACWY-D | Sanofi Pasteur | Menactra | 9 mos-55 yrs | 2005 | | MenACWY-CRM | GlaxoSmithKline | Menveo | 2 mos-55 yrs | 2010 | | MenACWY-TT^ | Sanofi Pasteur | MenQuadfi | ≥2 yrs | 2020 | | MPSV4* | Sanofi Pasteur | Menomune | ≥2 yrs | 2014 | | MCV4-TT** | Pfizer | Nimenrix | NA | NA | MenACWY-D=Meningococcal groups A, C, W, and Y polysaccharide diphtheria toxoid conjugate vaccine MenACWY-CRM=Meningococcal groups A, C, W, and Y oligosaccharide diphtheria CRM197 conjugate vaccine MenACWY-TT=Meningococcal groups A, C, W, Y polysaccharide tetanus toxoid conjugate vaccine (^Contains 10μg each of serogroup A, C, W, and Y polysaccharides conjugated to 55μg tetanus toxoid carrier protein) MPSV4=meningococcal polysaccharide vaccine, Groups A, C, Y and W combined ^{*}No longer available in the United States ^{**}Never licensed in the United States, contains 5µg each of serogroup A, C, W, and Y polysaccharides conjugated to 44µg tetanus toxoid carrier protein | Vaccine product | Manufacturer | Trade name | Licensed for ages | Year licensed | |-----------------|-----------------|------------|-------------------|---------------| | MenACWY-D | Sanofi Pasteur | Menactra | 9 mos–55 yrs | 2005 | | MenACWY-CRM | GlaxoSmithKline | Menveo | 2 mos-55 yrs | 2010 | | MenACWY-TT^ | Sanofi Pasteur | MenQuadfi | ≥2 yrs | 2020 | | MPSV4* | Sanofi Pasteur | Menomune | ≥2 yrs | 2014 | | MCV4-TT** | Pfizer | Nimenrix | NA | NA | MenACWY-D=Meningococcal groups A, C, W, and Y polysaccharide diphtheria toxoid conjugate vaccine MenACWY-CRM=Meningococcal groups A, C, W, and Y oligosaccharide diphtheria CRM197 conjugate vaccine MenACWY-TT=Meningococcal groups A, C, W, Y polysaccharide tetanus toxoid conjugate vaccine (^Contains 10μg each of serogroup A, C, W, and Y polysaccharides conjugated to 55μg tetanus toxoid carrier protein) MPSV4=meningococcal polysaccharide vaccine, Groups A, C, Y and W combined ^{*}No longer available in the United States ^{**}Never licensed in the United States, contains 5µg each of serogroup A, C, W, and Y polysaccharides conjugated to 44µg tetanus toxoid carrier protein ### **MenACWY vaccine recommendations** | Population | Recommendation | Included in evidence profile | | |---|---|------------------------------|--| | Adolescents aged 11 – 18 years | 1 dose at age 11 or 12 Booster at age 16 | Yes | | | Persons with complement component deficiency, including patients taking a complement inhibitor | | | | | Persons with functional or anatomic asplenia (including sickle cell disease) | 2 dose primary series Booster every 3-5 years | No | | | Persons with HIV infection | | | | | Microbiologists routinely exposed to Neisseria meningitidis | 1 dose Booster every 5 years | Yes (first booster only) | | | Persons at increased risk during an outbreak | 1 dose (booster if previously vaccinated) | Yes (if aged ≥2 years) | | | Persons who travel to or reside in countries where meningococcal disease is endemic or hyperendemic | 1 dose Booster if remains at increased risk | Yes (if aged ≥2 years) | | | Unvaccinated or under-vaccinated college freshmen living in residence halls | • 1 dose | Yes | | | Military recruits | 1 dose Booster every 5 years on basis of assignment | Yes 7 | | | I | Policy question: Should MenACWY-TT (MenQuadfi) be included as an option for | |---|--| | I | meningococcal ACWY vaccination according to currently recommended dosing and | | I | schedules? | | schedules? | | |--------------|--| | Population | Persons aged ≥ 2 years currently recommended to receive meningococcal ACWY conjugate vaccines | | Intervention | Vaccination with MenACWY-TT according to currently recommended dosing and schedules | | Comparison | Vaccination with MenACWY-D and MenACWY-CRM according to currently recommended dosing and schedules | | Outcome | Serogroup A, C, W, or Y meningococcal disease Short-term immune response Persistence of immune response Immune interference due to co-administration with other routine adolescent vaccines Serious adverse events | \sim # Outcomes ranking and inclusion in evidence profile | Туре | Outcome | Importance | Included in evidence profile | |----------|---|------------|------------------------------| | | Serogroup A, C, W, or Y meningococcal disease | Critical | No | | Benefits | Short-term immune response | Critical | Yes | | | Persistence of immune response | Important | Yes | | Harms | Immune interference due to co-administration with other routine adolescent vaccines | Critical | Yes | | Hairis | Serious adverse events | Critical | Yes | #### **Problem** - ACIP has recognized importance of meningococcal disease as a public health problem through existing vaccine recommendations - Work Group felt question of whether to include MenACWY-TT as an option for meningococcal vaccination is of public health importance given recent vaccine licensure and to support security of vaccine supply #### **Benefits and Harms** - How substantial are the desirable and undesirable anticipated effects? - Certainty of evidence assessed via GRADE #### **Evidence Retrieval** - Systematic review of studies in any language from PubMed, Medline, Embase, CINAHL, Cochrane, Scopus, clinicaltrials.gov, and clinicaltrialsregister.eu databases using search string: - MenACYW-TT, MenACYWTT, MenACYW TT, MCV4-TT, MCV4TT, MCV4 TT, MenQuadfi, and "vaccin*" and "(immunogenicity or efficacy or effectiveness or impact or safety or adverse event*)" - Efforts made to obtain unpublished or other relevant data - Included studies that presented primary data on MenACWY-TT (MenQuadfi) #### **Evidence Retrieval** | Study
Code | Study design | Population | Country | N
(MenACWY-TT) | N
(comparison) | Outcome | |---------------|--|-----------------------------|--|-------------------|-------------------|--| | MET54 | Phase II
randomized, open-label | 12-24 months | Finland | 94 | 94 | Immunogenicity,
safety | | MET51 | Phase III
randomized, modified double blind | 12-23 months | Spain, Finland, Germany, Hungary | 506 | 404 | Immunogenicity,
safety | | MET35 | Phase III randomized, modified double-blind | 2-9 years | United States, Puerto Rico | 480 | 482 | Immunogenicity,
safety | | MET43 | Phase III
randomized, modified double-blind | 10-17 years,
18-55 years | United States | 1098, 1410** | 300, 293** | Immunogenicity,
safety | | MET44 | Phase II
randomized, open label | 56+ years | United States | 201 | 100 | Immunogenicity,
safety | | MET49 | Phase III randomized, modified double-blind | 56+ years | United States, Puerto Rico | 448 | 453 | Immunogenicity,
safety | | MET56* | Phase III randomized, modified double-blind | 15+ years | United States, Puerto Rico | 403 | 407 | Immunogenicity,
safety | | MET50 | Phase II
randomized, open-label | 10-17 years | United States | 499, 391^ | 500, 296^ | Immunogenicity,
safety,
coadministration | | MET57 | Phase III
randomized, open-label | 12-23 months | Mexico, Russia, South Korea,
Thailand | 294, 589^ | 294 | Safety,
coadministration | | MET62* | Phase III
open-label; follow-up to MET54 | 4-5 years | Finland | 42 | 49 | Safety, persistence | ^{*}Safety and/or immunogenicity evaluated after booster dose **N's for 10-17y and 18-55y age groups, respectively ^N's in meningococcal vaccine only and co-administration groups, respectively | Study
Code | Study design | Population | Country | N
(MenACWY-TT) | N
(comparison) | Outcome | |---------------|---|-----------------------------|--|-------------------|-------------------|--| | MET54 | Phase II
randomized, open-label | 12-24 months | Finland | 94 | 94 | Immunogenicity,
safety | | MET51 | Phase III randomized, modified double blind | 12-23 months | Spain, Finland, Germany, Hungary | 506 | 404 | Immunogenicity,
safety | | МЕТ35 | Phase III randomized, modified double-blind | 2-9 years | United States, Puerto Rico | 480 | 482 | Immunogenicity,
safety | | MET43 | Phase III randomized, modified double-blind | 10-17 years,
18-55 years | United States | 1098, 1410** | 300, 293** | Immunogenicity,
safety | | MET44 | Phase II
randomized, open label | 56+ years | United States | 201 | 100 | Immunogenicity,
safety | | MET49 | Phase III randomized, modified double-blind | 56+ years | United States, Puerto Rico | 448 | 453 | Immunogenicity,
safety | | MET56* | Phase III randomized, modified double-blind | 15+ years | United States, Puerto Rico | 403 | 407 | Immunogenicity,
safety | | MET50 | Phase II
randomized, open-label | 10-17 years | United States | 499, 391^ | 500, 296^ | Immunogenicity,
safety,
coadministration | | MET57 | Phase III
randomized, open-label | 12-23 months | Mexico, Russia, South Korea,
Thailand | 294, 589^ | 294 | Safety,
coadministration | | MET62* | Phase III
open-label; follow-up to MET54 | 4-5 years | Finland | 42 | 49 | Safety, persistence | ^{*}Safety and/or immunogenicity evaluated after booster dose **N's for 10-17y and 18-55y age groups, respectively ^N's in meningococcal vaccine only and co-administration groups, respectively | Study
Code | Study design | Population | Country | N
(MenACWY-TT) | N
(comparison) | Outcome | |---------------|--|-----------------------------|--|-------------------|-------------------|--| | MET54 | Phase II
randomized, open-label | 12-24 months | Finland | 94 | 94 | Immunogenicity,
safety | | MET51 | Phase III
randomized, modified double blind | 12-23 months | Spain, Finland, Germany, Hungary | 506 | 404 | Immunogenicity,
safety | | MET35 | Phase III randomized, modified double-blind | 2-9 years | United States, Puerto Rico | 480 | 482 | Immunogenicity,
safety | | MET43 | Phase III randomized, modified double-blind | 10-17 years,
18-55 years | United States | 1098, 1410** | 300, 293** | Immunogenicity,
safety | | MET44 | Phase II
randomized, open label | 56+ years | United States | 201 | 100 | Immunogenicity,
safety | | MET49 | Phase III randomized, modified double-blind | 56+ years | United States, Puerto Rico | 448 | 453 | Immunogenicity,
safety | | MET56* | Phase III randomized, modified double-blind | 15+ years | United States, Puerto Rico | 403 | 407 | Immunogenicity, safety | | MET50 | Phase II
randomized, open-label | 10-17 years | United States | 499, 391^ | 500, 296^ | Immunogenicity,
safety,
coadministration | | MET57 | Phase III
randomized, open-label | 12-23 months | Mexico, Russia, South Korea,
Thailand | 294, 589^ | 294 | Safety,
coadministration | | MET62* | Phase III
open-label; follow-up to MET54 | 4-5 years | Finland | 42 | 49 | Safety, persistence | ^{*}Safety and/or immunogenicity evaluated after booster dose **N's for 10-17y and 18-55y age groups, respectively ^N's in meningococcal vaccine only and co-administration groups, respectively | Study
Code | Study design | Population | Country | N
(MenACWY-TT) | N
(comparison) | Outcome | |---------------|---|-----------------------------|--|-------------------|-------------------|--| | MET54 | Phase II
randomized, open-label | 12-24 months | Finland | 94 | 94 | Immunogenicity,
safety | | MET51 | Phase III randomized, modified double blind | 12-23 months | Spain, Finland, Germany, Hungary | 506 | 404 | Immunogenicity,
safety | | MET35 | Phase III randomized, modified double-blind | 2-9 years | United States, Puerto Rico | 480 | 482 | Immunogenicity,
safety | | MET43 | Phase III randomized, modified double-blind | 10-17 years,
18-55 years | United States | 1098, 1410** | 300, 293** | Immunogenicity,
safety | | MET44 | Phase II
randomized, open label | 56+ years | United States | 201 | 100 | Immunogenicity,
safety | | MET49 | Phase III randomized, modified double-blind | 56+ years | United States, Puerto Rico | 448 | 453 | Immunogenicity,
safety | | MET56* | Phase III randomized, modified double-blind | 15+ years | United States, Puerto Rico | 403 | 407 | Immunogenicity,
safety | | MET50 | Phase II
randomized, open-label | 10-17 years | United States | 499, 391^ | 500, 296^ | Immunogenicity,
safety,
coadministration | | MET57 | Phase III
randomized, open-label | 12-23 months | Mexico, Russia, South Korea,
Thailand | 294, 589^ | 294 | Safety,
coadministration | | MET62* | Phase III
open-label; follow-up to MET54 | 4-5 years | Finland | 42 | 49 | Safety, persistence | ^{*}Safety and/or immunogenicity evaluated after booster dose **N's for 10-17y and 18-55y age groups, respectively ^N's in meningococcal vaccine only and co-administration groups, respectively | Study
Code | Study design | Population | Country | N
(MenACWY-TT) | N
(comparison) | Outcome | |---------------|---|-----------------------------|--|-------------------|-------------------|--| | MET54 | Phase II
randomized, open-label | 12-24 months | Finland | 94 | 94 | Immunogenicity,
safety | | MET51 | Phase III randomized, modified double blind | 12-23 months | Spain, Finland, Germany, Hungary | 506 | 404 | Immunogenicity,
safety | | МЕТ35 | Phase III randomized, modified double-blind | 2-9 years | United States, Puerto Rico | 480 | 482 | Immunogenicity,
safety | | MET43 | Phase III randomized, modified double-blind | 10-17 years,
18-55 years | United States | 1098, 1410** | 300, 293** | Immunogenicity,
safety | | MET44 | Phase II
randomized, open label | 56+ years | United States | 201 | 100 | Immunogenicity,
safety | | MET49 | Phase III randomized, modified double-blind | 56+ years | United States, Puerto Rico | 448 | 453 | Immunogenicity,
safety | | MET56* | Phase III randomized, modified double-blind | 15+ years | United States, Puerto Rico | 403 | 407 | Immunogenicity,
safety | | MET50 | Phase II
randomized, open-label | 10-17 years | United States | 499, 391^ | 500, 296^ | Immunogenicity,
safety,
coadministration | | МЕТ57 | Phase III
randomized, open-label | 12-23 months | Mexico, Russia, South Korea,
Thailand | 294, 589^ | 294 | Safety,
coadministration | | MET62* | Phase III
open-label; follow-up to MET54 | 4-5 years | Finland | 42 | 49 | Safety, persistence | ^{*}Safety and/or immunogenicity evaluated after booster dose **N's for 10-17y and 18-55y age groups, respectively ^N's in meningococcal vaccine only and co-administration groups, respectively #### Persons with underlying medical conditions were excluded from evaluated studies | Population | Recommendation | Included in evidence profile | |---|---|------------------------------| | Adolescents aged 11 – 18 years | 1 dose at age 11 or 12 Booster at age 16 | Yes | | Persons with complement component deficiency, including patients taking a complement inhibitor | | | | Persons with functional or anatomic asplenia (including sickle cell disease) | 2 dose primary series Booster every 3-5 years | No | | Persons with HIV infection | | | | Microbiologists routinely exposed to Neisseria meningitidis | 1 dose Booster every 5 years | Yes (first booster only) | | Persons at increased risk during an outbreak | 1 dose (booster if previously vaccinated) | Yes (if aged ≥2 years) | | Persons who travel to or reside in countries where meningococcal disease is endemic or hyperendemic | 1 dose Booster if remains at increased risk | Yes (if aged ≥2 years) | | Unvaccinated or under-vaccinated college freshmen living in residence halls | • 1 dose | Yes | | Military recruits | 1 dose Booster every 5 years on basis of assignment | Yes 19 | # Short-term immune response data example MET50, Ages 10-17 Comparator MenACWY-CRM | Serogroup | Geometic Mean
Titers (GMT)
MenACWY-TT | GMT
MenACWY-
CRM | GMT Ratios
(GMTR)* | % seroresponders^
MenACWY-TT | % seroresponders^
MenACWY-CRM | Absolute difference in
% seroresponders**
(95% CI) | |-----------|---|------------------------|-----------------------|---------------------------------|----------------------------------|--| | Α | 44.1 | 35.2 | 1.25 | 75.6 | 66.4 | 9.2 (3.4-15.0) | | С | 387.0 | 51.4 | 7.53 | 97.2 | 72.6 | 24.6 (20.3-29.0) | | W | 86.9 | 36.0 | 2.41 | 86.2 | 66.6 | 19.6 (14.2-24.8) | | Υ | 75.7 | 27.6 | 2.74 | 97.0 | 80.8 | 16.2 (12.3-20.2) | ^{*}Calculated as [GMT (MenACWY-TT)] / [GMT (MenACWY-CRM)] ^Post-vaccination titer of ≥1:16 for subjects with pre-vaccination titer <1:8; 4-fold increase in 10 titer post-vaccination for subjects with pre-vaccination titer ≥1:8 **Calculated as [% seroresponders (MenACWY-TT)] – [% seroresponders (MenACWY-CRM)] ### Summary of studies reporting short-term immune response | Study
Code | Participant
age | N
(MenACWY-TT) | N
(comparison) | Comparator
Vaccine | GMT
ratios* | Absolute difference in % seroresponders*^ | Interpretation | |---------------|--------------------|-------------------|-------------------|-----------------------|----------------|---|---| | MET54 | 12-24
months | 94 | 94 | MCV4-TT** | 1.25-17.36 | 0.1-14.0 | Descriptive; higher GMTs and % seroresponders with MenACWY-TT | | MET51 | 12-23
months | 491 | 395 | MCV4-TT** | 0.82-7.59 | -0.6-19.7 | Non-inferior ^{&} | | МЕТ35 | 2-9 years | 458 | 460 | MenACWY-CRM | 1.09-14 | 7.6-47.4 | Non-inferior ^{&} | | МЕТ50 | 10-17 years | 499 | 500 | MenACWY-CRM | 1.25-7.53 | 9.2-24.6 | Non-inferior ^{&} | | MET43 | 10-17 years | 1098 | 300 | MenACWY-D | 1.64-11.4 | 9.9-42.3 | Non-inferior ^{&} | | MET43 | 18-55 years | 1410 | 293 | MenACWY-D | 2.03-6.24 | 19.6-41.1 | Non-inferior ^{&} | | MET44 | 56+ years | 201 | 100 | MPSV4 | 1.60-2.61 | 11.2-26.5 | Descriptive; higher GMTs and % seroresponders with MenACWY-TT | | MET49 | 56+ years | 448 | 453 | MPSV4 | 1.75-4.07 | 15.7-31 | Non-inferior ^{&} | | MET56^^ | 15+ years | 384 | 389 | MenACWY-D | 1.68-4.37 | 1.8-7.4 | Non-inferior ^{&} | All analyses conducted on per-protocol population ^{*}Range for serogroups A, C, W, Y ^Positive results favor MenACWY-TT ^{**}Nimenrix, not licensed in US [&]Non-inferiority demonstrated if lower limit of the 95% # **GRADE Certainty of Evidence** | Evidence type | Study Design | |---------------|--| | 1 | Randomized controlled trials (RCTs) or overwhelming evidence from observational studies | | 2 | RCTs with important limitations, or exceptionally strong evidence from observational studies | | 3 | Observational studies, or RCTs with notable limitations | | 4 | Clinical experience and observations, observational studies with important limitations, or RCTs with several major limitations | # Certainty of evidence for short-term immune response – Healthy individuals | | Certainty assessment | | | | | | | Nº of patients Ro | | | | |-----------------|----------------------|-----------------|---------------|--------------|-------------|----------------------|--------------|-------------------|--|-----------|------------| | № of
studies | Study
design | Risk
of bias | Inconsistency | Indirectness | Imprecision | Other considerations | Intervention | Comparison | | Certainty | Importance | | 8 | Randomized
trials | No
serious* | No serious | No serious | No serious | None | 5083 | 2984 | Noninferior
See study
specific
slides | 1 | CRITICAL | ^{*} Although most trials were not fully double-blinded, outcomes were objective titers and laboratory staff testing the samples were blinded to group assignment of the participants. #### Certainty of evidence for short-term immune response – #### Individuals with medical conditions that increase meningococcal disease risk | | Certainty assessment | | | | | | | atients | Results | | | |-----------------|----------------------|-----------------|---------------|---------------|-------------|----------------------|--------------|------------|--|-----------|------------| | № of
studies | Study
design | Risk
of bias | Inconsistency | Indirectness | Imprecision | Other considerations | Intervention | Comparison | | Certainty | Importance | | 8 | Randomized
trials | No
serious* | No serious | Very serious^ | No serious | None | 5083 | 2984 | Noninferior
See study
specific
slides | 3 | CRITICAL | ^{*} Although most trials were not fully double-blinded, outcomes were objective titers and laboratory staff testing the samples were blinded to group assignment of the participants. *Studies did not include individuals at increased meningococcal disease risk due to underlying medical conditions (complement component deficiency, anatomic or functional asplenia, or HIV) ### Summary of studies reporting serious adverse events (SAEs) | Study Code | Participant age | % SAE
MenACWY-TT | % SAE
Comparator group | N related to vaccine | |------------|-----------------|---------------------|---------------------------|----------------------| | MET54 | 12-24 months | 1.1 | 0 | 0 | | MET51 | 12-23 months | 0.8 | 0.7 | 0 | | MET57 | 12-23 months | 0.0 - 7.7 | 0.0 - 3.8* | 0 | | MET35 | 2-9 years | 1.4 | 0.6 | 0 | | MET50 | 10-17 years | 0.8 | 0.8 | 0 | | MET43 | 10-17 years | 0.3 | 0.9 | 0 | | MET43 | 18-55 years | 1.6 | 0.6 | 0 | | MET44 | 56+ years | 0.0 | 0.0 | 0 | | MET49 | 56+ years | 3.3 | 3.3 | 0 | | MET62** | 4-5 years | 0.0 | NA^ | 0 | | MET56** | 15+ years | 1.2 | 1.0 | 0 | ^{*}Comparator group includes other infant/toddler vaccines but no meningococcal vaccine ^{**}Safety and/or immunogenicity evaluated after booster dose [^]Randomized trial for persistence after primary dose; no comparison group for safety data after booster # Certainty of evidence for serious adverse events – Healthy individuals | | Certainty assessment | | | | | | № of patients Results | | Results | | | |-----------------|----------------------|-----------------|---------------|--------------|-------------|----------------------|-----------------------|------------|-------------------------------|-----------|------------| | № of
studies | Study
design | Risk of
bias | Inconsistency | Indirectness | Imprecision | Other considerations | Intervention | Comparison | | Certainty | Importance | | 9 | Randomized
trials | Serious* | No serious | No serious | No serious | None | 6413 | 3623 | No vaccine
related
SAEs | 2 | CRITICAL | ^{*}Most trials not fully double-blinded and outcome measure criteria are not described (whether SAE is related to vaccine) #### Certainty of evidence for serious adverse events – #### Individuals with medical conditions that increase meningococcal disease risk | | Certainty assessment | | | | | | № of patients Resul | | | | | |-----------------|----------------------|-----------------|---------------|---------------|-------------|----------------------|---------------------|------------|-------------------------------|-----------|------------| | № of
studies | • | Risk of
bias | Inconsistency | Indirectness | Imprecision | Other considerations | Intervention | Comparison | | Certainty | Importance | | 9 | Randomized
trials | Serious* | No serious | Very serious^ | No serious | None | 6413 | 3623 | No vaccine
related
SAEs | 4 | CRITICAL | ^{*}Most trials not fully double-blinded and outcome measure criteria are not described (whether SAE is related to vaccine) [^]Studies did not include individuals at increased meningococcal disease risk due to underlying medical conditions (complement component deficiency, anatomic or functional asplenia, or HIV) ### Persistence of immune response - One study evaluated immune persistence to MenACWY-TT 3 years after vaccination with primary dose of MenACWY-TT or MCV4-TT* - % seroresponders not reported | Study
Code | Participant age | N
(MenACWY-TT) | N
(MCV4-TT*) | Serogroup | GMT
MenACWY-TT | GMT
MCV4-TT | GMT Ratio | |---------------|-----------------|-------------------|-----------------|-----------|-------------------|----------------|-----------| | | | | | Α | 12.1 | 16.5 | 0.73 | | NAETES | 4-5 years | 4-5 years 40 | 44 | С | 106 | 11.7 | 9.1 | | MET62 | | | | W | 48.5 | 21.9 | 2.2 | | | | | | Υ | 30.9 | 17.6 | 1.8 | ^{*}Not licensed in the United States # Certainty of evidence for persistence of immune response – ### **Healthy individuals** | | Certainty assessment | | | | | | | atients | Results | | | |-----------------|----------------------|-----------------|---------------|--------------|-------------|----------------------|--------------|------------|--|-----------|------------| | № of
studies | Study
design | Risk of
bias | Inconsistency | Indirectness | Imprecision | Other considerations | Intervention | Comparison | | Certainty | importance | | 1 | Randomized
trial | Serious* | NA | Serious^ | Serious** | None | 40 | 44 | Higher
GMTs for
serogroups
C, W, Y;
lower for
serogroup A | | IMPORTANT | ^{*}Fewer than 50% of participants who received primary dose were evaluated for immune persistence [^]Study conducted in Finland in patients vaccinated as toddlers, an age group for which MenACWY-TT is not currently licensed in the United States. ^{**}Small number of participants in each arm ### Certainty of evidence for persistence of immune response – #### Individuals with medical conditions that increase meningococcal disease risk | Certainty assessment | | | | | | | № of patients | | Results | | | |----------------------|---------------------|-----------------|---------------|---------------|-------------|----------------------|---------------|------------|--|-----------|------------| | № of
studies | Study
design | Risk of
bias | Inconsistency | Indirectness | Imprecision | Other considerations | Intervention | Comparison | | Certainty | Importance | | 1 | Randomized
trial | Serious* | NA | Very serious^ | Serious** | None | 40 | 44 | Higher
GMTs for
serogroups
C, W, Y;
lower for
serogroup A | 4 | IMPORTANT | ^{*}Fewer than 50% of participants who received primary dose were evaluated for immune persistence [^]Study conducted in Finland in patients vaccinated as toddlers, an age group for which MenACWY-TT is not currently licensed in the United States; study did not include individuals at increased meningococcal disease risk due to underlying medical conditions (complement component deficiency, anatomic or functional asplenia, HIV) ^{**}Small number of participants in each arm # Immune interference due to coadministration with routine adolescent vaccines - One study assessed coadministration in 10-17y age group - Response to quadrivalent HPV vaccine | HPV Type | GMT
MenACWY-TT+Tdap+HPV | GMT
Tdap+HPV | GMTR* | Interpretation** | | |----------|----------------------------|-----------------|-------|------------------|--| | 6 | 800 | 800 | 1.00 | Non-inferior | | | 11 | 1492 | 1402 | 1.06 | Non-inferior | | | 16 | 6002 | 6395 | 0.939 | Non-inferior | | | 18 | 1271 | 1118 | 1.14 | Non-inferior | | ^{*}Calculated as [GMT (MenACWY-TT+Tdap+HPV)] / [GMT (Tdap+HPV)] **Non-inferiority demonstrated if lower limit of 95% confidence interval of the GMTR is >0.67 for each antigen # Immune interference due to coadministration with routine adolescent vaccines Response to Tdap vaccine | Antigen | % with ≥ 1.0 IU/mL ab
MenACYW-TT+Tdap+HPV | % with ≥ 1.0 IU/mL ab
Tdap+HPV | Absolute % difference | Interpretation* | |----------------------|--|-----------------------------------|-----------------------|---------------------------------------| | Tetanus | 99.7 | 99.6 | 0.1 | Non-inferior | | Diphtheria | 97.8 | 98.9 | -1.1 | Non-inferior | | Pertussis
antigen | GMC
MenACYW-TT+Tdap+HPV | GMC
Tdap+HPV | GMC Ratio | Interpretation** | | PT | 37.5 | 44.4 | 0.845 | Non-inferior | | FHA | 180 | 242 | 0.746 | Did not meet non-inferiority criteria | | PRN | 200 | 265 | 0.753 | Did not meet non-inferiority criteria | | FIM | 339 | 499 | 0.679 | Did not meet non-inferiority criteria | Abbreviations: Ab=antibody; GMC=geometric mean concentration. *Non-inferiority demonstrated if lower limit of 95% confidence interval of percent difference between groups is > -10%. **Non-inferiority demonstrated if lower limit of 95% confidence interval of the GMTR is >0.67 for each antigen # GMC Ratios for coadministration of MenACWY and Tdap compared to Tdap alone - 3 of 4 pertussis antigens did not meet criteria for noninferiority in MenACWY-TT coadministration study - Decreased Tdap immune response demonstrated in previous studies of coadministration with MenACWY vaccines - GMT ratios for MenACWY-TT similar when compared to co-administration with currently recommended MenACWY vaccines #### Clinical significance unknown | | MenACWY-TT + Tdap + HPV | MenACWY-CRM + Tdap ¹ | MenACWY-D + Tdap ² | |-----|-------------------------|---------------------------------|-------------------------------| | PT | 0.85 | 0.78 | 0.93 | | FHA | 0.75 | 0.85 | 0.76 | | PRN | 0.75 | 0.62 | 0.63 | | FIM | 0.68 | NA | NA | ¹ Gasparini et al. (2010) "Randomized Trial on the Safety, Tolerability, and Immunogenicity of MenACWY-CRM, an Investigational Quadrivalent Meningococcal Glycoconjugate Vaccine, Administered Concomitantly With a Combined Tetanus, Reduced Diphtheria, and Acellular Pertussis Vaccine in Adolescents and Young Adults" ² Weston et al. (2011) "Immunogenicity and Reactogenicity of Co-Administered Tetanus-Diphtheria-Acellular Pertussis (Tdap) and Tetravalent Meningococcal Conjugate (MCV4) Vaccines Compared to Their Separate Administration # Certainty of evidence for immune interference due to coadministration with other routine adolescent vaccines – # **Healthy individuals** | | Certainty assessment | | | | | | | № of patients | | | | |-----------------|----------------------|-----------------|---------------|--------------|-------------|----------------------|-----------------------|-----------------------|--|-----------|------------| | № of
studies | Study
design | Risk of
bias | Inconsistency | Indirectness | Imprecision | Other considerations | Intervention | Comparison | | Certainty | Importance | | 1 | Randomized
trial | Serious* | NA | No serious | No serious | None | Tdap: 360
HPV: 242 | Tdap: 263
HPV: 164 | Noninferior for Tetanus, Diphtheria, HPV, Pertussis toxoid antigen Noninferiority not met for Pertussis FHA, PRN, FIM antigens** | 2 | CRITICAL | ^{*}Unexplained reduction in number of participants evaluated for HPV immunogenicity ^{**}The clinical relevance of the diminished responses to the pertussis antigens is unknown. Similar coadministration issues have been observed with other meningococcal vaccines. # Certainty of evidence for immune interference due to coadministration with other routine adolescent vaccines — #### Individuals with medical conditions that increase meningococcal disease risk | | Certainty assessment | | | | | | | № of patients | | | | |-----------------|----------------------|-----------------|---------------|---------------|-------------|----------------------|-----------------------|-----------------------|--|-----------|------------| | № of
studies | Study
design | Risk of
bias | Inconsistency | Indirectness | Imprecision | Other considerations | Intervention | Comparison | | Certainty | Importance | | 1 | Randomized
trial | Serious* | NA | Very serious^ | No serious | None | Tdap: 360
HPV: 242 | Tdap: 263
HPV: 164 | Noninferior for Tetanus, Diphtheria, HPV, Pertussis toxoid antigen Noninferiority not met for Pertussis FHA, PRN, FIM antigens** | 4 | CRITICAL | ^{*}Unexplained reduction in number of participants evaluated for HPV immunogenicity ^{**} The clinical relevance of the diminished responses to the pertussis antigens is unknown. Similar coadministration issues have been observed with other meningococcal vaccines. [^]Studies did not include individuals at increased meningococcal disease risk due to underlying medical conditions (complement component deficiency, anatomic or functional asplenia, or HIV) #### Coadministration of MenACWY-TT and PCV13 - Both PCV13 and MenACWY vaccines recommended for individuals with certain medical conditions (e.g. asplenia) - One study assessed coadministration of MenACWY-TT and PCV13 in toddlers - No evidence of immune interference between MenACWY-TT and PCV13 ## Quality of evidence for outcomes of interest | Туре | Outcome | Importance | Included in
evidence
profile | Certainty
for healthy
individuals | Certainty for individuals with medical conditions that increase meningococcal disease risk | |----------|---|------------|------------------------------------|---|--| | Benefits | Serogroup A, C, W, or Y meningococcal disease | Critical | No | N/A | N/A | | | Short-term immune response | Critical | Yes | 1 | 3 | | | Persistence of immune response | Important | Yes | 4 | 4 | | Harms | Immune interference due to co-administration with other routine adolescent vaccines | Critical | Yes | 2 | 4 | | | Serious adverse events | Critical | Yes | 2 | 4 | #### **Benefits and Harms – Summary** - Work group felt that desirable effects outweigh undesirable effects - Favors inclusion of MenACWY-TT as an option for meningococcal ACWY vaccination ### Values, Acceptability, and Feasibility - 86.6% vaccination coverage for at least one dose of MenACWY vaccine among adolescents¹ demonstrates that target population values and accepts this intervention and that it is feasible with current vaccination platforms - Limited data on uptake among other individuals recommended to receive MenACWY vaccine - Not expected that values, acceptability, or feasibility would differ for MenACWY-TT #### **Resource Use** - MenACWY-TT cost projected to be within 5% of cost of currently licensed and available MenACWY conjugate vaccines - Resource allocation will not be substantively affected by inclusion of MenACWY-TT as an option for MenACWY vaccination ## Should MenACWY-TT (MenQuadfi) be included as an option for meningococcal ACWY vaccination according to currently recommended dosing and schedules? | Criteria | Question | Work Group
Interpretation* | |------------------------|--|--| | Problem | Is the problem of public health importance? | Yes | | Benefits and
Harms | How substantial are the desirable anticipated effects? How substantial are the undesirable anticipated effects? Do the desirable effects outweigh the undesirable effects? What is the overall certainty of the evidence for the critical outcomes? | Small
Minimal
Favors intervention
Varies (High to very low) | | Values and preferences | Does the target population feel that the desirable effects are large relative to undesirable effects? Is there important uncertainty about or variability in how much people value the main outcomes? | Yes Probably no important uncertainty or variability | | Acceptability | Is the intervention acceptable to key stakeholders? | Yes | | Resource Use | Is the intervention a reasonable and efficient allocation of resources? | Yes | | Feasibility | Is the intervention feasible to implement? | Yes | #### **Balance of Consequences** Question: Should MenACWY-TT (MenQuadfi) be included as an option for meningococcal ACWY vaccination according to currently recommended dosing and schedules? | Balance of | Undesirable | Undesirable | The balance | Desirable | Desirable | |--------------|------------------|-------------------|---------------------|------------------|------------------| | consequences | consequences | consequences | between | consequences | consequences | | 1 | clearly outweigh | probably outweigh | desirable and | probably | clearly outweigh | | | desirable | desirable | undesirable | outweigh | undesirable | | | consequences | consequences | consequences | undesirable | consequences | | | in most settings | in most settings | is closely balanced | consequences | in most settings | | | | | or uncertain | in most settings | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | #### **Work Group Interpretation** There is sufficient information to move forward with a decision - Work group consensus: - MenACWY-TT (MenQuadfi) should be included as an option for meningococcal ACWY vaccination according to currently recommended dosing and schedules - Use only among individuals aged 2 years and up (licensed age groups) #### Off label use of MenACWY vaccines - 2-dose primary series for the following groups at increased risk: - Persons with complement component deficiency - Persons with functional or anatomic asplenia (including sickle cell disease) - Persons with HIV infection - Booster doses for persons aged <15 years</p> - >1 booster dose for persons recommended to receive a booster every 3-5 years - MenACWY-D and MenACWY-CRM for persons aged >55 - Not off-label for MenACWY-TT # Implementation of MenACWY-TT as an option for MenACWY vaccination - Does not represent a change in policy or ACIP recommendations and therefore does not require an ACIP vote - VFC vote and updated VFC resolution required to include MenACWY-TT as an option in the Vaccines for Children Program ### Acknowledgements - ACIP Meningococcal Vaccines Work Group - Doug Campos-Outcalt - Susan Hariri - Jamie Cope - Sara Oliver #### References | Clinical Study
Code | | ClinicalTrials.gov
Identifier | |------------------------|---|----------------------------------| | MET54 | Vesikari T et al. (2020) "Immunogenicity and Safety of an Investigational Quadrivalent Meningococcal Conjugate Vaccine in Healthy Toddlers." Human Vaccines & Immunotherapeutics. https://doi.org/10.1080/21645515.2020.1733869, https://www.clinicaltrialsregister.eu/ctr-search/trial/2014-004367-20/results | NCT03205358 | | MET51 | Vesikari T et al. (2019) "Immunogenicity and Safety of an Investigational Quadrivalent Meningococcal Conjugate Vaccine in Toddlers 12 to 23 Months of Age." 37th Annual Meeting of the European Society of Pediatric Infectious Diseases (ESPID). https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-000749-30/results | NCT02955797 | | MET35 | Simon M et al. (2019) "Immunogenicity and Safety of an Investigational Quadrivalent Meningococcal Conjugate Vaccine Administered in Healthy Children 2 to 9 Years of Age." ID Week 2019. https://www.clinicaltrialsregister.eu/ctr-search/trial/2018-001471-20/results | NCT03077438 | | MET56 | Áñez G et al. (2020) "Immunogenicity and Safety of a Booster Dose of an Investigational Quadrivalent Meningococcal Conjugate Vaccine in Adolescents and Adults." Human Vaccines & Immunotherapeutics. https://www.clinicaltrialsregister.eu/ctr-search/trial/2018-001470-18/results | NCT02752906 | | MET43 | Peterson J et al. (2019) "Immune Lot Consistency, Immunogenicity, and Safety of an Investigational Quadrivalent Meningococcal Conjugate Vaccine in Adolescents and Adults Aged 10 to 55 Years." ID Week 2019. https://www.clinicaltrialsregister.eu/ctr-search/trial/2018-001468-48/results | NCT02842853 | | MET44 | Kirstein J et al. (2020) "Immunogenicity and Safety of an Investigational Quadrivalent Meningococcal Conjugate Vaccine in Adults 56 Years and Older." Human Vaccines & Immunotherapeutics. https://doi.org/10.1080/21645515.2020.1733868 | NCT01732627 | | MET49 | Esteves-Jaramillo et al. (2020) "Immunogenicity and Safety of an Investigational Quadrivalent Meningococcal Conjugate Vaccine in Adults Age 56 Years and Older." Vaccine. https://doi.org/10.1016/j.vaccine.2020.04.067 | NCT02842866 | | MET50 | Chang L et al. (2020) "Immunogenicity and Safety of an Investigational Quadrivalent Meningococcal Conjugate Vaccine in Healthy Adolescents." Vaccine. https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-001963-35/results | NCT02199691 | | MET57 | "Immunogenicity and Safety of an Investigational Quadrivalent Meningococcal Conjugate Vaccine Administered Concomitantly With Other Pediatric Vaccines in Healthy Toddlers." https://www.clinicaltrialsregister.eu/ctr-search/trial/2018-001472-38/results | NCT03205371 | | MET62 | "Immunogenicity and Safety of an Investigational Quadrivalent Meningococcal Conjugate Vaccine Administered as a Booster Dose in Children Vaccinated 3 Years Earlier as Toddlers." https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-001993-40/results | NCT03476135 | For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.